
So�ware Development (cs2500)
Lecture 52: More Design Patterns

M.R.C. van Dongen

March 2, 2011

Contents
1 Outline 1

2 �e Singleton Pattern 1

3 �e Adapter Pattern 5

4 For Friday 6

5 Acknowledgements 6

1 Outline
�ese lectures studies three Design Patterns.

Singleton pattern: Lets you de�ne a class that’s instantiated once.

Command pattern: Lets you encapsulate a request as an object.

Adapter pattern: Converts a incompatible interface to a compatible interface.

�is lecture is based on [Gamma et al., 2008; Bloch, 2008].

2 �e Singleton Pattern
Some classes should be instantiated only once. For example, there should be only one �le system, only
one window manager, …. A class which is instantiated ony once is called a singleton classes.

Design Principle 1 (Singleton Pattern). �e Singleton Pattern lets you create classes that can be intantiated
only once.

1

�e following is a typical implementation. �is example is from [Bloch, 2008, Item 3].
public class Elvis {

private static final Elvis INSTANCE = new Elvis();

private Elvis() { … }

public static Elvis getInstance() { return INSTANCE; }
public void leaveTheBuilding() { … }

}

Java

�e final guarantees that INSTANCE is instantiated only once. �e static ensures that INSTANCE is a
class attribute: there is only one of it. �e private constructor guarantees that the constructor cannot
be accessed from outside. In short this class seems to satisfy all requirements of a singleton class. (Still
it is possible for an adverse client to invoke the constructor. �is involves re�ection, which we haven’t
covered yet.)

�ere turns out to be a better implementation of our Elvis class. �is is the best way to implement a
singleton class [Bloch, 2008, Item 3].
public enum Elvis {

INSTANCE;

public void leaveTheBuilding() { … }
}

Java

�is section studies the Command Pattern.

Design Principle 2 (Command Pattern). �e Command Pattern encapsulates a request as an object,
thereby letting you parameterise clients with di�erent requests, queue or log requests, and support undoable
operations.

To understand the pattern, let’s carry out a case study. Many applications require an on-o� facility.

On: Turn the light on, turn the television on, ….

O�: Turn the light o�, turn the television o�, ….

Undo: Optionally, undo the last operation.

Since on-o� applications are so common, we want to handle them without knowing all their details.
Let’s implement a OnOfSwitch class for controlling on-o� applications. �e class has the following
functionality:

on(): Turn the application on: runs the on command.

off(): Turn the application o�: runs the o� command.

setOnCommand(): Set the command for on().

setOffCommand(): Set the command for off().

2

To implement this we need a Command interface. We’ll forget about the undo option.
In our Command interface we only de�ne one method: execute(). �is method just carries out the

required task. By creating concrete class instances we can carry out speci�c tasks.
public interface Command {

public void execute();
}

Java

If on and o� operations requires much coding e�ort the you probably want to implement a concrete
class that executes the operation.
public class ConcreteTvOnCommand implements Command {

public void execute() { System.out.println("TV goes on."); }
}

Java

Otherwise, you probably want to implement a concrete Command instance with an inner class or an
anonymous class.
Command tvOnCommand = new Command() {

public void execute() { System.out.println("TV goes on."); }
};

Java

�e following is the OnOffSwitch class. �e class issues the execute() methods of the Command
instances.
public class OnOffSwitch {

private Command on;
private Command off;

public OnOffSwitch(Command onCommand, Command offCommand) {
this.on = onCommand;
this.off = offCommand;

}

public void on() {
on.execute();

}

public void off() {
off.execute();

}

public void setOnCommand(Command command) {
this.on = command;

}

public void setOffCommand(Command command) {
this.off = command;

}
}

Java

Let’s use our OnOfSwitch class to control Tv and a Light objects. We’ll use the following two classes
to implement Tv and Light objects. Notice that the two classes are completely unrelated.
public class Tv {

public void tvOn() { System.out.println("Turning Tv on."); }
public void tvOff() { System.out.println("Turning Tv off."); }

}

Java

3

public class Light {
public void lightOn() { System.out.println("Turning light on."); }
public void lightOff() { System.out.println("Turning light off."); }

}

Java

�e following shows how we may use the OnOffSwitch class. �e implementation of the private
methods is provided further on.
public class Client {

public static void main(String[] args) {
OnOffSwitch tvSwitch = createInvoker(new Tv());
tvSwitch.on();
tvSwitch.off();
OnOffSwitch lightSwitch = createInvoker(new Light());
lightSwitch.on();
lightSwitch.off();

}

private static OnOffSwitch createInvoker(final Tv tv) {
// Omitted
return new OnOffSwitch(onCommand, offCommand);

}

private static OnOffSwitch createInvoker(final Light light) {
// Omitted
return new OnOffSwitch(onCommand, offCommand);

}
}

Java

private static OnOffSwitch createInvoker(final Tv tv) {
Command onCommand = new Command() {

private final Tv receiver = tv;
public void execute() { receiver.tvOn(); }

};
Command offCommand = new Command() {

private final Tv receiver = tv;
public void execute() { receiver.tvOff(); }

};
return new OnOffSwitch(onCommand, offCommand);

}

private static OnOffSwitch createInvoker(final Light light) {
Command onCommand = new Command() {

private final Light receiver = light;
public void execute() { receiver.lightOn(); }

};
Command offCommand = new Command() {

private final Light receiver = light;
public void execute() { receiver.lightOff(); }

};
return new OnOffSwitch(onCommand, offCommand);

}

Java

�e general picture of the Command Pattern is as follows. �e Command interface de�nes an interface
for executing commands. Concrete Command classes de�ne a receiver and an action. �e action may not
always be explicitly represented. Figure 1 depicts the Command Pattern graphically.

�e following are some possible applications of the Command Pattern.

• Parameterise objects by an action to perform.

• Specify, queue, and execute command requests at di�erent times. For example, you may create a

4

Invoker
Command command

«interface»
Command

execute()

ConcreteCommand
Receiver receiver
execute()

Receiver

action()

Client
Receiver receiver

has a

has a

has a

creates

Figure 1: �e Command Pattern.

Command object, send it to a receiver (processor), and request that the receiver execute the Command.

• Support undo() operations. It is le� as an exercise to implement this.

• Support logging changes. �is allows you to replay a sequence of commands, recover from crashes,
and so on.

3 �e Adapter Pattern
�is section studies the Adapter Pattern.

Design Principle 3 (Adapter Pattern). �e Adapter Pattern converts an incompatible interface into a
compatible interface.

Figure 2 depicts a client class called DrawClass and an interface called Graphics. �e client class
de�nes a method called rect() which draws a rectangle by calling the instance method drawRect() of
a Graphics object instance variable which is called g. �e Graphics interfaces de�nes this method but
without a class implementing the interface, the DrawClass is useless.

�e Graphics interface and the class DrawClass are incompatible, just like a European electricity socket
and an Irish electricity plug are incompatible: your iPod charger can’t be plugged into the European
sockets. �is is why most Irish people travelling to the continent take an adapter with them.1 �e adapter
plugs in to the European electricity socket and their iPod charger plugs into the adapter.

�e Adapter Design Pattern works just like the electricty adapter. It makes an interface compatible
with a class by adapting it. Getting back to our example, we can implement an adapter for the Graphics

1�at is to say, if they were thinking when they were packing their bags.

5

«interface»
Graphics

drawRect()

DrawClass Adapter
«interface»

ToolBox

Graphics g

void rect() {
g.drawRect();

}
drawLine()

ToolBox tb

void drawRect() {
tb.drawLine();…

}

Figure 2: Incompatible interface.

interface by implementing a class called Adapterwhich implements Graphics. �e Adapter class overrides
drawRect() and implements it using the method drawLine(), which is de�ned in the interface ToolBox,
which is known to have an implementation.

To complete the design, we initialise the instance variable g in the DrawClass as follows: g = new
Adapter().

4 For Friday
Study the lecture notes.

5 Acknowledgements
�is lecture is based on [Gamma et al., 2008] and on [Bloch, 2008].

References
[Bloch, 2008] Joshua Bloch. E�ective Java. Addison–Wesley, 2008.

[Gamma et al., 2008] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented So�ware. Addison–Wesley, 2008. 36th Printing.

6

Client «interface»
Target

request()

Adapter

request()

Adaptee

specificRequest()

implements

uses

uses

Figure 3: Delegation-based Adapter Pattern in uml.

7

	Outline
	The Singleton Pattern
	The Adapter Pattern
	For Friday
	Acknowledgements

